896 research outputs found

    The Solar-System-Scale Disk Around AB Aurigae

    Full text link
    The young star AB Aurigae is surrounded by a complex combination of gas-rich and dust dominated structures. The inner disk which has not been studied previously at sufficient resolution and imaging dynamic range seems to contain very little gas inside a radius of least 130 astronomical units (AU) from the star. Using adaptive-optics coronagraphy and polarimetry we have imaged the dust in an annulus between 43 and 302 AU from the star, a region never seen before. An azimuthal gap in an annulus of dust at a radius of 102 AU, along with a clearing at closer radii inside this annulus, suggests the formation of at least one small body at an orbital distance of about 100 AU. This structure seems consistent with crude models of mean motion resonances, or accumulation of material at two of the Lagrange points relative to the putative object and the star. We also report a low significance detection of a point source in this outer annulus of dust. This source may be an overdensity in the disk due to dust accreting onto an unseen companion. An alternate interpretation suggests that the object's mass is between 5 and 37 times the mass of Jupiter. The results have implications for circumstellar disk dynamics and planet formation.Comment: 11 pages, 5 figures, accepted for publication in Astrophysical Journal, V. 680, June 10, 200

    The Lyot Project Direct Imaging Survey of Substellar Companions: Statistical Analysis and Information from Nondetections

    Get PDF
    The Lyot project used an optimized Lyot coronagraph with Extreme Adaptive Optics at the 3.63m Advanced Electro-Optical System telescope (AEOS) to observe 86 stars from 2004 to 2007. In this paper we give an overview of the survey results and a statistical analysis of the observed nondetections around 58 of our targets to place constraints on the population of substellar companions to nearby stars. The observations did not detect any companion in the substellar regime. Since null results can be as important as detections, we analyzed each observation to determine the characteristics of the companions that can be ruled out. For this purpose we use a Monte Carlo approach to produce artificial companions, and determine their detectability by comparison with the sensitivity curve for each star. All the non-detection results are combined using a Bayesian approach and we provide upper limits on the population of giant exoplanets and brown dwarfs for this sample of stars. Our nondetections confirm the rarity of brown dwarfs around solar-like stars and we constrain the frequency of massive substellar companions (M>40Mjup) at orbital separation between and 10 and 50 AU to be <20%.Comment: 32 pages, 11 figures, 2 tables. Published in the Astrophysical Journa

    Silicon Nanoparticles: Source of Extended Red Emission?

    Full text link
    We have reviewed the characteristics of the extended red emission (ERE) as observed in many dusty astronomical environments, in particular, the diffuse interstellar medium of the Galaxy. The spectral nature and the photon conversion efficiency of the ERE identify the underlying process as highly efficient photoluminescence by an abundant component of interstellar dust. We have compared the photoluminescence properties of a variety of carbon- and silicon-based materials proposed as sources for the ERE with the observationally established constraints. We found that silicon nanoparticles provide the best match to the spectrum and the efficiency requirement of the ERE. If present in interstellar space with an abundance sufficient to explain the intensity of the ERE, silicon nanoparticles will also contribute to the interstellar 9.7 micron Si-O stretch feature in absorption, to the near- and mid-IR nonequilibrium thermal background radiation, and to the continuum extinction in the near- and far-UV. About 36% of the interstellar silicon depleted into the dust phase would be needed in the form of silicon nanoparticles, amounting to less than 5% of the interstellar dust mass. We propose that silicon nanoparticles form through the nucleation of SiO in oxygen-rich stellar mass outflows and that they represent an important small-grain component of the interstellar dust spectrum.Comment: 5 pages; 1 included figure; accepted 1998 May 1, ApJ

    The Lyot project: toward exoplanet imaging and spectroscopy

    Get PDF
    Among the adaptive optics systems available to astronomers, the US Air Force Advanced Electro-Optical System (AEOS) is unique because it delivers very high order wave front correction. The Lyot Project includes the construction and installation of the world’s first diffraction-limited, optimized coronagraph that exploits the full astronomical potential of AEOS and represents a critical step toward the long-term goal of directly imaging and studying extrasolar planets (a.k.a. “exoplanets”). We provide an update on the Project, whose coronagraph saw first light in March 2004. The coronagraph is operating at least as well as predicted by simulations, and a survey of nearby stars has begun

    Adsorption dynamics of hydrophobically modified polymers at an air-water interface

    Get PDF
    The adsorption dynamics of a series of hydrophobically modified polymers, PAAαCn, at the air-water interface is studied by measuring the dynamic surface tension. The PAAαCn are composed of a poly(acrylic acid) backbone grafted with a percentage α of C8 or C12 alkyl moieties, at pH conditions where the PAA backbone is not charged. The observed adsorption dynamics is very slow and follows a logarithmic behavior at long times indicating the building of an energy barrier which grows over time. After comparison of our experimental results to models from the literature, a new model which accounts for both the deformation of the incoming polymer coils as well as the deformation of the adsorbed pseudo-brush is described. This model enables to fit very well the experimental data. The two fitting parameters give expected values for the monomer size and for the area per adsorbed polymer chain.This article is uploaded in "arXiv.org" https://arxiv.org/abs/1706.0710

    Speckle Suppression Through Dual Imaging Polarimetry, and a Ground-Based Image of the HR 4796A Circumstellar Disk

    Full text link
    We demonstrate the versatility of a dual imaging polarimeter working in tandem with a Lyot coronagraph and Adaptive Optics to suppress the highly static speckle noise pattern--the greatest hindrance to ground-based direct imaging of planets and disks around nearby stars. Using a double difference technique with the polarimetric data, we quantify the level of speckle suppression, and hence improved sensitivity, by placing an ensemble of artificial faint companions into real data, with given total brightness and polarization. For highly polarized sources within 0.5 arcsec, we show that we achieve 3 to 4 magnitudes greater sensitivity through polarimetric speckle suppression than simply using a coronagraph coupled to a high-order Adaptive Optics system. Using such a polarimeter with a classical Lyot coronagraph at the 3.63m AEOS telescope, we have obtained a 6.5 sigma detection in the H-band of the 76 AU diameter circumstellar debris disk around the star HR 4796A. Our data represent the first definitive, ground-based, near-IR polarimetric image of the HR 4796A debris disk and clearly show the two outer ansae of the disk, evident in Hubble Space Telescope NICMOS/STIS imaging. We derive a lower limit to the fractional linear polarization of 29% caused by dust grains in the disk. In addition, we fit simple morphological models of optically thin disks to our data allowing us to constrain the dust disk scale height to 2.5{+5.0}_{-1.3} AU and scattering asymmetry parameter (g=0.20^{+.07}_{-.10}). These values are consistent with several lines of evidence suggesting that the HR 4796A disk is dominated by a micron-sized dust population, and are indeed typical of disks in transition between those surrounding the Herbig Ae stars to those associated with Vega-like stars.Comment: Accepted to ApJ, 8 pages, 4 figures, minor typos fixed, one reference adde

    Discovery and Characterization of a Faint Stellar Companion to the A3V Star Zeta Virginis

    Get PDF
    Through the combination of high-order Adaptive Optics and coronagraphy, we report the discovery of a faint stellar companion to the A3V star zeta Virginis. This companion is ~7 magnitudes fainter than its host star in the H-band, and infrared imaging spanning 4.75 years over five epochs indicates this companion has common proper motion with its host star. Using evolutionary models, we estimate its mass to be 0.168+/-.016 solar masses, giving a mass ratio for this system q = 0.082. Assuming the two objects are coeval, this mass suggests a M4V-M7V spectral type for the companion, which is confirmed through integral field spectroscopic measurements. We see clear evidence for orbital motion from this companion and are able to constrain the semi-major axis to be greater than 24.9 AU, the period > 124$ yrs, and eccentricity > 0.16. Multiplicity studies of higher mass stars are relatively rare, and binary companions such as this one at the extreme low end of the mass ratio distribution are useful additions to surveys incomplete at such a low mass ratio. Moreover, the frequency of binary companions can help to discriminate between binary formation scenarios that predict an abundance of low-mass companions forming from the early fragmentation of a massive circumstellar disk. A system such as this may provide insight into the anomalous X-ray emission from A stars, hypothesized to be from unseen late-type stellar companions. Indeed, we calculate that the presence of this M-dwarf companion easily accounts for the X-ray emission from this star detected by ROSAT.Comment: 9 pages, 6 figures, Accepted to Ap
    • 

    corecore